43 research outputs found

    Repulsive Deep Ensembles are Bayesian

    Full text link
    Deep ensembles have recently gained popularity in the deep learning community for their conceptual simplicity and efficiency. However, maintaining functional diversity between ensemble members that are independently trained with gradient descent is challenging. This can lead to pathologies when adding more ensemble members, such as a saturation of the ensemble performance, which converges to the performance of a single model. Moreover, this does not only affect the quality of its predictions, but even more so the uncertainty estimates of the ensemble, and thus its performance on out-of-distribution data. We hypothesize that this limitation can be overcome by discouraging different ensemble members from collapsing to the same function. To this end, we introduce a kernelized repulsive term in the update rule of the deep ensembles. We show that this simple modification not only enforces and maintains diversity among the members but, even more importantly, transforms the maximum a posteriori inference into proper Bayesian inference. Namely, we show that the training dynamics of our proposed repulsive ensembles follow a Wasserstein gradient flow of the KL divergence with the true posterior. We study repulsive terms in weight and function space and empirically compare their performance to standard ensembles and Bayesian baselines on synthetic and real-world prediction tasks

    SOM-VAE: Interpretable Discrete Representation Learning on Time Series

    Full text link
    High-dimensional time series are common in many domains. Since human cognition is not optimized to work well in high-dimensional spaces, these areas could benefit from interpretable low-dimensional representations. However, most representation learning algorithms for time series data are difficult to interpret. This is due to non-intuitive mappings from data features to salient properties of the representation and non-smoothness over time. To address this problem, we propose a new representation learning framework building on ideas from interpretable discrete dimensionality reduction and deep generative modeling. This framework allows us to learn discrete representations of time series, which give rise to smooth and interpretable embeddings with superior clustering performance. We introduce a new way to overcome the non-differentiability in discrete representation learning and present a gradient-based version of the traditional self-organizing map algorithm that is more performant than the original. Furthermore, to allow for a probabilistic interpretation of our method, we integrate a Markov model in the representation space. This model uncovers the temporal transition structure, improves clustering performance even further and provides additional explanatory insights as well as a natural representation of uncertainty. We evaluate our model in terms of clustering performance and interpretability on static (Fashion-)MNIST data, a time series of linearly interpolated (Fashion-)MNIST images, a chaotic Lorenz attractor system with two macro states, as well as on a challenging real world medical time series application on the eICU data set. Our learned representations compare favorably with competitor methods and facilitate downstream tasks on the real world data.Comment: Accepted for publication at the Seventh International Conference on Learning Representations (ICLR 2019

    Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice

    Full text link
    Meta-Learning aims to speed up the learning process on new tasks by acquiring useful inductive biases from datasets of related learning tasks. While, in practice, the number of related tasks available is often small, most of the existing approaches assume an abundance of tasks; making them unrealistic and prone to overfitting. A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks. In this work, we provide a theoretical analysis using the PAC-Bayesian theory and present a generalization bound for meta-learning, which was first derived by Rothfuss et al. (2021). Crucially, the bound allows us to derive the closed form of the optimal hyper-posterior, referred to as PACOH, which leads to the best performance guarantees. We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds. The closed-form PACOH inspires a practical meta-learning approach that avoids the reliance on bi-level optimization, giving rise to a stochastic optimization problem that is amenable to standard variational methods that scale well. Our experiments show that, when instantiating the PACOH with Gaussian processes and Bayesian Neural Networks models, the resulting methods are more scalable, and yield state-of-the-art performance, both in terms of predictive accuracy and the quality of uncertainty estimates.Comment: 61 pages. arXiv admin note: text overlap with arXiv:2002.0555

    Hodge-Aware Contrastive Learning

    Full text link
    Simplicial complexes prove effective in modeling data with multiway dependencies, such as data defined along the edges of networks or within other higher-order structures. Their spectrum can be decomposed into three interpretable subspaces via the Hodge decomposition, resulting foundational in numerous applications. We leverage this decomposition to develop a contrastive self-supervised learning approach for processing simplicial data and generating embeddings that encapsulate specific spectral information.Specifically, we encode the pertinent data invariances through simplicial neural networks and devise augmentations that yield positive contrastive examples with suitable spectral properties for downstream tasks. Additionally, we reweight the significance of negative examples in the contrastive loss, considering the similarity of their Hodge components to the anchor. By encouraging a stronger separation among less similar instances, we obtain an embedding space that reflects the spectral properties of the data. The numerical results on two standard edge flow classification tasks show a superior performance even when compared to supervised learning techniques. Our findings underscore the importance of adopting a spectral perspective for contrastive learning with higher-order data.Comment: 4 pages, 2 figure
    corecore